High Integrity Diecasting for Structural Applications

A holistic approach to improved die casting quality

iMdc meeting, WPI, Worcester, MA December 12, 2013
Services offered

- Assistance in material, process/technology selection, implementation and optimization for specific application
- Assistance in sourcing metal/process/castings (supplier benchmarking and selection, supplier development)
- Assistance with part / system development, specifications, prototyping, testing, etc.
- (International) market development
- Trainings, seminars, workshops
- Project management (time, cost, quality)
Aluminum content in automotive
Structural aluminum die castings

... are being used for
- Saving weight & costs - replacing
 - Heavier materials
 - Thicker walled parts
 - Steel/Al assemblies and stampings
 - Higher cost materials and processes
 - ...
- For performance increases
- For pressure tight parts
- ...

Viami International Inc.
Applications for structural high integrity aluminum die castings

Shock Tower
A Pillar Inner
A Pillar Outer
B Pillar
B Pillar Top
Bracket
Steering Column
Steering Panel
Door Structure
Crossmember / Engine Cradle

Source: Shiloh

Viami International Inc.
Applications for structural high integrity aluminum die castings

BIW structures: It usually starts in very high-end vehicles before it spreads into high volume cars – example of Mercedes SL

- World premiere in January 2012 - Launch March 2012
- Aluminium and FRP detachable body components
- Weight advantage of approx. 110 kg versus conv. steel design

Source: Daimler AG, Dr. Lutz Storsberg, Mercedes-Benz Cars, Structural Symposium Bühler AG, Hamilton, Canada, October 1, 2013

Viami International Inc.
Applications for structural high integrity aluminum die castings

BIW structure Mercedes SL

- 34 Vacuum-HPDC parts
- 2 low pressure diecasting parts
- Total weight of castings: 110 kg

Source: Daimler AG, Dr. Lutz Storsberg, Mercedes-Benz Cars, Structural Symposium Bühler AG, Hamilton, Canada, October 1, 2013

Viami International Inc.
Applications for structural high integrity aluminum die castings

Suspension parts

Porsche Side beam member, rear axle
Longitudinal Beam

Alloy: Aural-3
Heat Treatment: Auraltherm™

Viami International Inc.
Applications for structural high integrity aluminum die castings

Yamaha motorbike main and seat frame in Silafont™ 36 in T5
Applications for structural high integrity aluminum die castings

- BRP part produced by AMT in Silafont 36 / Aural-2
- replaces two gravity cast parts.
- Significant reduction in machining costs
Why High Pressure Die Casting?

Advantages

– Lowest Cost mass production casting process
– Very easy to automate
– Very high dimensional tolerances are possible
– Very thin walls / complex shapes possible
– Excellent surface finish
– Very high solidification rate
– “Skin” effect can give very good fatigue performance
The effect of freezing rates
High Pressure Die Casting

Disadvantages

– Very expensive tooling - need high volumes to justify
– Usually high amounts of porosity / defects and
– Typical HPDC alloys are secondary (high Fe alloys – to avoid die soldering)

➢ which do not allow good mechanical properties and fatigue life!
Fatigue life of Al castings*

• Strongly depends on casting defects and inhomogeneities – those strongly reduce fatigue crack initiation life

• Absent of defects, crack initiation occurs at fatigue sensitive microstructural constituents.
 ➢ Porosity
 ➢ Oxides
 ➢ (Si, Fe, etc. rich) intermetallic particles
 ➢ ...

• Maximum defect size determines fatigue life

*) See also Modern Casting Article “Predicting the Fatigue Life of Aluminum Castings (May 2013) based on research paper 13-1342 from P. Jones & Q. Wang (GM) presented at the 2013 AFS Metalcasting Congress
Porosity in High Pressure Die Casting

High vacuum high integrity Diecasting for Structural Castings

- Standard Diecasting
- Standard Vacuum Diecasting

Viami International Inc.
Typical Diecasting Defects

- Shrinkage porosity
- Oxide inclusions
- Gas porosity
- Sludge particles
- Other inclusions, etc.
Al₅FeSi NEEDLE-LIKE PHASE

Very high Fe:
An extreme example

380 alloy (ALSi8Cu3Fe)

Viami International Inc.
Requirements for structural high integrity aluminum die castings

- Weight reduction
- Part integration
- High mechanical properties
- Crash performance
- Corrosion resistance
- Weldable / heat treatable (blisters!)
- Surface quality (esp. joining / contact surfaces)
- Distortion free with tight tolerances
- Pressure tightness
- ...

Example mechanical properties:

- YS: 100/120MPa
- UTS: 180MPa
- EI: ≥10%
- Bending angle: ≥50/60° (d=2mm)
Requirements for structural high integrity aluminum die castings

Example: Part integration and weight reduction

B pillar 1st Audi A8

- PARTS: 8
- WEIGHT: 4180 g
 - 9.21 lbs

B pillar Audi A2

- PARTS: 1
- WEIGHT: 2300 g
 - 5.07 lbs

Viami International Inc.
Requirements for structural high integrity aluminum die castings

Example: Part integration and weight reduction

BMW X5 shock tower

• Very low level of entrapped gasses allowing for subsequent heat treatment

• BMW part is 40% weight of traditional steel part and comparably priced.

• High strength and ductility

Before: required 5 welded steel stampings weighing 18 lbs.

After: One piece, 7.2 pounds or 40% of traditional steel fender well

Viami International Inc.
Requirements for structural high integrity aluminum diecastings

Crash performance: Static loading of 25 lb. drive shaft housings illustrates Mercalloy®’s far superior energy absorption

Alloy: XK 360 with 1.3% max Fe
One sudden, fast-propagating failure mode [in less than 100 milliseconds]

Alloy: Mercalloy® 367 - Crush-like failure never splitting completely – Honorable Mention in 2010 NADCA Casting of the Year Competition
Fracture Toughness depends on Fe content & dendrite arm spacing

Source: John Campbell: CASTING [1991 edition], page 266, figure 8.3.

Viami International Inc.
Factors affecting die-casting quality

- Alloy composition and impurities
- Metal quality (oxides, hydrogen content, sludge, dross, other inclusions)
- Metal temperature, treatment, transfer, delivery to shot sleeve
- Die-casting machine (size, type, equipment)
 - Clamp/platen: clamp pressure/platen programmable
 - Shot end: shot speeds/profile, pressure, closed loop control
- Monitoring/Control system:
 - for all critical process parameters / full machine diagnostics
 - graphical user interface (HMI) provide SPC
Factors affecting die-casting quality

- Shot tooling:
 - Cold chamber (proper size, temperature control, etc.)
 - Shot tip (with ring to create seal and internal cooling)
 - Plunger lube (type and application)
- Die-casting dies / gating design / overflow design
- Part design (wall thickness, changes, etc.)
- Die temperature
- Lubricant type, application and efficiency
- Vacuum system: level & type / cavity pressure / control
- Part extraction and quench system
- Trimming
- Heat treatment and other process steps
A „holistic“ approach is needed!
Complete Die Casting Process Technology

Courtesy of Magna BDW GmbH & Co. KG, Markt Schwaben, Germany
Typical process chain for structural high integrity die castings

- Melting of high quality metal
- Proper melt treatment & Transfer
- High integrity Casting & Trimming
- Low distortion Heat Treatment
- Q-Gate: Composition check and adjustment
- Q-Gate: Density Check
- Q-Gate: X-Ray, Weldability, Crack Inspection, Blister Check
- Q-Gate: Tensile Test, Bending test, Blister check
- Straightening
- Castings ready to assemble
- Washing, Etching & Convers.-coating
- Dispatch
- Machining
- Q-Gate: Visual Check
- Q-Gate: Dimensional Check
- Q-Gate: Size / tolerance Check

Viami International Inc.
Melting, melt treatment & transfer

Items to pay attention to:

- Oxides
- Hydrogen
- Sludge
- Dross
- Other inclusions

Measures to be taken:

- Proper temperature control of melt
- Avoiding excessive turbulences/splashing
- Degassing
- Fluxing
- Filtering
- Settling

\[
\text{"Sludge" Factor} = (1 \times \%\text{Fe}) + (2 \times \%\text{Mn}) + (3 \times \%\text{Cr})
\]

\[
\text{Fluidity (mm)}
\]

\[
\text{Temperature (C)}
\]

Filtered vs. Unfiltered Fluidity and Temperature Graph
Melting, melt treatment & transfer

Any metal “waterfall” in the metal transfer will generate oxide inclusions!
Melting, melt treatment & transfer

Examples: StrikoWestofen dosing furnace
Pressurized dosing furnace with transfer launder and integrated porous plugs for continuous degassing.

Støtek DosoTherm
Un-pressurized dosing furnace with integrated metal filter, featuring Støtek patented pump technology.
Melting, melt treatment & transfer

Viami International Inc.

Melt transfer into the shot sleeve: Swivel Launder

…has developed the design of the launder and the swivel jig in order to achieve a high melt quality level for high integrity diecastings.

- Ceramic launder (1); Furnace spout (2); Hydraulic cylinder (3); Holding furnace (4); Swivel jig height adjustment (5); Mechanical swivel jig (6); Position sensors (7)

Courtesy of Magna BDW GmbH & Co. KG, Markt Schwaben, Germany
Product Development

• Component Design
 – Robust designs meet both functional & manufacturing requirements …
 – …and lead to higher quality products
 – Design engineers should collaborate with casting engineers in the early stages of product development

• Gating and Die Design
 – Simulation is a must
 – Gating and overflow (including vacuum gating) design is important
 – Utilization of gates along nearly entire front edge of part
Numerical simulation

- Runner design optimization - provide a continuous flow path into and through the part
- Casting defects prediction
- Temperature distribution at surface of the cavity
- Velocity field in the liquid metal during die filling
Die design, thermal balance and process control

Process Control – Die Temperature

- Real-time cycle-to-cycle die surface temperature monitoring with cycle-to-cycle adaptive control
- Read and store the die skin temperature at each cycle of the machine. It can monitor the die (outlined by laser pointers) with an IR camera mounted in a protective stainless steel case.
- High/Low limits can be set to alert the robot or unloading device to segregate a casting with an out of spec reading.

Viiami International Inc.

[Courtesy of Visi-Trak Worldwide, LLC](https://www.diecasting.org/imis/scriptcontent/transactions/details.cfm?ID=13041)
Die design and sealing

Moving half of die with gating system (green) and overflow/vacuum system (red)
Part contour (blue)
position of ejector pins (purple)
cooling/heating systems (dark green)

O-Rings are used extensively on tooling to prevent leaks
Thermal isolation plates are used to improve warm-up time
Multiple short hot oil zones are utilized to control die temperature
Shot monitoring and control

- Real time control of shot velocity.
- Monitor key variables
- Derive key process parameters
- Casting characteristics are calculated and reported.
 - Design experiments to understand relationships and causes of variation
 - Accrue production information including scrap and downtime data

Visi-Trak Sure-Trak2 real time shot control system

Viami International Inc.

Courtesy of Visi-Trak Worldwide, LLC
http://www.visi-trak.com/Media/Vann_Proof_withAd.pdf
Example: The slow shot

Too Slow?

Too Fast?
Example: The slow shot

Constant acceleration

Viami International Inc. Courtesy of Visi-Trak Worldwide, LLC
High vacuum die casting

Why vacuum diecasting:

- Vacuum levels in the die cavity and shot sleeve below 50 millibar (ideally 2 stage vacuum system)
- Reduced cavity gases from the shot sleeve and die.
- Reduced porosity levels
- Reduced wall-thickness
- Ability to produce otherwise unsuitable parts in aluminium die casting

Main differences in equipment/processes are in: Vacuum valve type, vacuum control system, and vacuum monitoring approach.
High vacuum die casting

Advanced monitoring techniques used to ensure proper vacuum level during the casting process, proper vacuum response & vacuum evacuation time and to detect vacuum leaks, vacuum blockages as well as excessive moisture

Vacuum start

Vacuum stop
High vacuum die casting – valve types

Mechanical Valves

Pros
• Vacuum pulled through entire shot
• Does not require expensive controller
• Easy to remove and clean
• Biscuit size variation is not an issue

Cons
• Smaller valve cross sectional area – less vacuum
• Potential for metal to fill evacuation line if metal does not completely fill
• Valves are expensive

Suppliers
• Castool
• Provac/VDS
• Fondarex
• …

Viami International Inc.
High vacuum die casting – valve types

Hydraulic/ Pneumatic vacuum valves

Pros
• Allows for larger valve (cross sectional area up to 400 square mm)
• Does not rely on metal to close valve (no issues with startup)
• Usually less down time (no metal shot into valve)

Cons
• Requires better control system
• Drawing vacuum through entire shot is more difficult
• Does not account for biscuit variation (requires very stable process)
• Requires hydraulic cylinders within tool

Suppliers
• MFT
• Buhler/ Prince
• ...

Viami International Inc.
High vacuum die casting – valve types

New chill vent/valve approach CASTvac

Chill face: 100mm x 100mm requires 80tonne locking force; Increased by 4 times: 400mmx100mm requires 320tonne locking force

3D (CASTvac) 4 times of chill face but only 80tonne force

In production in Nissan Australia for 6 years

Viami International Inc.
High vacuum die casting – valve types

Efficiency comparison with bench test

![Graph showing efficiency comparison with bench test]

- CASTvac Medium
- Mechanical valve
- Normal chill vent

Viami International Inc.
Vacuum and moisture are not compatible!
Complete process control and visualization

Example: Total-Trak HMI

- Monitor & control the entire automated machine cell & periphery
- Easy set-up - restore saved jobs in seconds.
- Complete I/O Diagnostics for a comprehensive view.
- Integrated shot control with the True-Trak20/20™ or Sure-Trak2™.
- Ladder logic display options available.

Courtesy of Visi-Trak Worldwide, LLC
Part traceability

- Proper identification of each part for customer and quality improvement
- Collect, store, archive, recall and download all process information
Part traceability

- Automatically collect and archive valuable process data for each part (automatic back-up, compress and store data)
- Uniquely identify each part
- Capture and link important secondary process (heat treatment, machining, etc.) and test data.
- Analyze your data to
 - Determine cause of variation
 - Inform your customers and improve quality
Alloys for high integrity diecastings

Low Fe (<0.25%), Mn to beat die soldering; low Cu; Sr

Al-Si alloy family: Al + 4-12%Si +0-0.6%Mg, Mn, Fe
- Silafont®-36 (365), Aural®-2/-3 (A365) and -5S, Mercalloy® (362, 367, 368), Castasil®-37, W3, etc.
- Excellent castability, heat treatable, most commonly used and wide variety of alloys commercially available

Al-Mg-Si family: Al + 2-5.5%Mg + 1.5-3%Si
- Magsimal®-59, C446, Aural®-11, Calypso 53 & 54SM, etc.
- Excellent properties as cast and in T5 temper
- Difficult to cast, properties extremely wall thickness dependent, require Be, hot tear and SCC susceptible

See May 2013 edition of Diecasting Engineer
The key role of each element:

Si \Rightarrow higher silicon content alloy promotes fluidity & castability

Mg \Rightarrow imparts strength

Fe \Rightarrow helps reduce solder but impacts negatively ductility

Mn \Rightarrow higher manganese content helps minimize solder and corrects Fe phase

Ti \Rightarrow used as a grain refiner

Cu \Rightarrow lower copper content of the alloy imparts higher corrosion resistance (usually strengthening element)

Sr \Rightarrow helps modify the eutectic silicon, thereby improving ductility of the alloy – also helps beat die soldering
Alloys for high integrity diecastings

Effect of Iron on Fatigue Curve for XK360 [100X life @0.001 strain]

100x greater life than 1% Fe Alloy
Over 10x greater life than A356-T6

Curve fits generated using ASTM E 739-91 practices

Courtesy of Mercury Marine
Alloys for high integrity diecastings

The influence of Mn (replacing Fe) mechanical properties
(example of Silafont® 36)

F temper

T6
Alloys for high integrity diecastings

The influence of Si and Mg on mechanical properties in the F temper

![Graph showing the influence of Si and Mg on mechanical properties](image)

- R_m: Tensile strength (MPa)
- $R_{p0.2}$: Yield strength (MPa)
- A: Area percentage (%)
- Si: Silicon content (%)
- Mg: Magnesium content (%)

Viami International Inc.
Alloys for high integrity diecastings

AA 365 - Silafont 36 (Rheinfelden)

Alloy denomination
Chemical denomination: AlSi9MgMn Numerical denomination: 43 500

Composition [% of mass]

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>Fe</th>
<th>Cu</th>
<th>Mn</th>
<th>Mg</th>
<th>Zn</th>
<th>Ti</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9.5 – 11.5</td>
<td>0.15</td>
<td>0.03</td>
<td>0.5 – 0.8</td>
<td>0.1 – 0.5</td>
<td>0.07</td>
<td>0.15</td>
<td>Sr</td>
</tr>
</tbody>
</table>

Mechanical properties

<table>
<thead>
<tr>
<th>Casting method</th>
<th>Treatment state</th>
<th>Yield tensile strength $R_{p0.2}$ [N/mm2]</th>
<th>Ultimate tensile strength R_m [N/mm2]</th>
<th>Elongation A [%]</th>
<th>Brinell hardness HBW</th>
</tr>
</thead>
<tbody>
<tr>
<td>High press. die casting</td>
<td>F</td>
<td>120 – 150</td>
<td>250 – 290</td>
<td>5 – 11</td>
<td>75 – 95</td>
</tr>
<tr>
<td>High press. die casting</td>
<td>T5</td>
<td>155 – 245</td>
<td>275 – 340</td>
<td>4 – 9</td>
<td>80 – 110</td>
</tr>
<tr>
<td>High press. die casting</td>
<td>T4</td>
<td>95 – 140</td>
<td>210 – 260</td>
<td>15 – 22</td>
<td>60 – 75</td>
</tr>
<tr>
<td>High press. die casting</td>
<td>T6</td>
<td>210 – 280</td>
<td>290 – 340</td>
<td>7 – 12</td>
<td>90 – 110</td>
</tr>
<tr>
<td>High press. die casting</td>
<td>T7</td>
<td>120 – 170</td>
<td>200 – 240</td>
<td>15 – 20</td>
<td>60 – 75</td>
</tr>
</tbody>
</table>
Alloys for high integrity diecastings

AA A365 – Aural-2 & 3 (Magna-Cosma)

Mechanical Properties of Aural alloys

<table>
<thead>
<tr>
<th>Alloys</th>
<th>Mg %</th>
<th>Si %</th>
<th>Fe %</th>
<th>Mn %</th>
<th>Ti %</th>
<th>Cu %</th>
<th>Sr (PPM)</th>
<th>Others %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aural 2</td>
<td>0.27 – 0.33</td>
<td>9.5 – 11.5</td>
<td>0.15 – 0.22</td>
<td>0.45 – 0.55</td>
<td>max 0.08</td>
<td>max 0.03</td>
<td>100–160</td>
<td>each 0.03 total 0.1</td>
</tr>
<tr>
<td>Aural 3</td>
<td>0.4 – 0.6</td>
<td>9.5 – 11.5</td>
<td>0.15 – 0.22</td>
<td>0.45 – 0.55</td>
<td>max 0.08</td>
<td>max 0.03</td>
<td>100–160</td>
<td>each 0.03 total 0.1</td>
</tr>
<tr>
<td>Aural 4</td>
<td>0.40-0.50</td>
<td>4.0-4.5</td>
<td>0.15-0.20</td>
<td>0.45 - 0.80</td>
<td>max 0.08</td>
<td>max 0.03</td>
<td>40-70</td>
<td>each 0.03 total 0.1</td>
</tr>
<tr>
<td>“A-Alloy”</td>
<td>0.15-0.40</td>
<td>7.5-8.5</td>
<td>0.15-0.20</td>
<td>0.45 – 0.55</td>
<td>Max 0.08</td>
<td>max 0.03</td>
<td>50-100</td>
<td>each 0.03 total 0.1</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>Alloys</th>
<th>R_m [Mpa]</th>
<th>RP_0,2 [Mpa]</th>
<th>A_5 [%]</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aural 2</td>
<td>250 – 310</td>
<td>120 - 150</td>
<td>5 -10</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>270-300</td>
<td>150-190</td>
<td>6.5 - 9</td>
<td>T5</td>
</tr>
<tr>
<td></td>
<td>200 – 220</td>
<td>120 – 140</td>
<td>14 – 18</td>
<td>Auraltherm – 2</td>
</tr>
<tr>
<td>Aural 3</td>
<td>250 – 310</td>
<td>130 – 160</td>
<td>4 – 8</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>300-340</td>
<td>190-240</td>
<td>4 - 6.5</td>
<td>T5</td>
</tr>
<tr>
<td></td>
<td>210 – 280</td>
<td>140 – 220</td>
<td>6 – 14</td>
<td>Auraltherm – 3</td>
</tr>
<tr>
<td>Aural 4†</td>
<td>219</td>
<td>103</td>
<td>17</td>
<td>F</td>
</tr>
<tr>
<td>†SSF</td>
<td>221</td>
<td>112</td>
<td>16</td>
<td>T5</td>
</tr>
<tr>
<td>Properties</td>
<td>260-300</td>
<td>170-235</td>
<td>9-17</td>
<td>T6</td>
</tr>
<tr>
<td>“A-Alloy“</td>
<td>250-270</td>
<td>110-150</td>
<td>8-12</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>270-300</td>
<td>150-190</td>
<td>5-8</td>
<td>T5</td>
</tr>
</tbody>
</table>

†SSF Properties
Alloys for high integrity diecastings

Mercalloy 367

Alloy 367.0

Alloy 367.0—Chemical Composition Limits

<table>
<thead>
<tr>
<th>Element</th>
<th>Si</th>
<th>Fe</th>
<th>Cu</th>
<th>Mn</th>
<th>Mg</th>
<th>Cr</th>
<th>Ni</th>
<th>Zn</th>
<th>Ti</th>
<th>Sr</th>
<th>Other Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.5-9.5</td>
<td>0.25</td>
<td>0.25-0.35</td>
<td>0.30-0.50</td>
<td>--</td>
<td>--</td>
<td>0.10</td>
<td>0.20</td>
<td>0.05-0.07</td>
<td>0.05</td>
<td>0.15</td>
</tr>
</tbody>
</table>
| **Typical Tensile Properties at 0.40% Mg**

<table>
<thead>
<tr>
<th>Casting Process and Temper</th>
<th>Aging Time and Temperature</th>
<th>Ultimate Strength ksi (MPa)</th>
<th>Yield Strength ksi (MPa)</th>
<th>Elongation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Cast 367.0—F</td>
<td>as cast</td>
<td>39.3 (270)</td>
<td>16.6 (115)</td>
<td>8.1</td>
</tr>
<tr>
<td>Die Cast 367.0—T5</td>
<td>2 hour at 170C</td>
<td>42.8 (295)</td>
<td>24.5 (170)</td>
<td>5.0</td>
</tr>
<tr>
<td>Die Cast 367.0—T5</td>
<td>4 hour at 170C</td>
<td>43.9 (300)</td>
<td>27.8 (190)</td>
<td>6.7</td>
</tr>
<tr>
<td>Die Cast 367.0—T5</td>
<td>6 hour at 170C</td>
<td>45 (310)</td>
<td>29 (200)</td>
<td>8.2</td>
</tr>
<tr>
<td>Die Cast 367.0—T5</td>
<td>8 hour at 170C</td>
<td>45 (310)</td>
<td>30 (205)</td>
<td>9.0</td>
</tr>
<tr>
<td>Die Cast 367.0—T4</td>
<td>3 hr at 490C + water quench</td>
<td>35.6 (245)</td>
<td>21.6 (150)</td>
<td>15</td>
</tr>
<tr>
<td>Die Cast 367.0—T6</td>
<td>2 hour at 170C</td>
<td>43 (295)</td>
<td>33.2 (230)</td>
<td>10.3</td>
</tr>
<tr>
<td>Die Cast 367.0—T6</td>
<td>4 hour at 170C</td>
<td>45 (310)</td>
<td>35 (240)</td>
<td>8</td>
</tr>
<tr>
<td>Die Cast 367.0—T6</td>
<td>6 hour at 170C</td>
<td>43.4 (300)</td>
<td>35.3 (245)</td>
<td>7.8</td>
</tr>
<tr>
<td>Die Cast 367.0—T6</td>
<td>8 hour at 170C</td>
<td>41.4 (285)</td>
<td>33.4 (230)</td>
<td>9.5</td>
</tr>
</tbody>
</table>
Alloys for high integrity diecastings
Mercalloy 368 & 362

Alloy 368.0

Chemical Composition Limits

<table>
<thead>
<tr>
<th>Element</th>
<th>Si</th>
<th>Fe</th>
<th>Cu</th>
<th>Mn</th>
<th>Mg</th>
<th>Cr</th>
<th>Ni</th>
<th>Zn</th>
<th>Ti</th>
<th>Sr</th>
<th>Other Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.5-9.5</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25-0.35</td>
<td>0.10-0.30</td>
<td>--</td>
<td>--</td>
<td>0.10</td>
<td>0.20</td>
<td>0.05-0.07</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Typical Mechanical Properties at 0.20% Mg

<table>
<thead>
<tr>
<th>Casting Process and Temper</th>
<th>Aging Time and Temperature</th>
<th>Tension</th>
<th>Endurance Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Cast 368.0--F</td>
<td>as cast</td>
<td>38-40 (260-275)</td>
<td>10-12</td>
</tr>
<tr>
<td>Die Cast 368.0--T6</td>
<td>6 hr at 320 F</td>
<td>41-43 (280-295)</td>
<td>14-16</td>
</tr>
</tbody>
</table>

Alloy 362.0

Chemical Composition Limits

<table>
<thead>
<tr>
<th>Element</th>
<th>Si</th>
<th>Fe</th>
<th>Cu</th>
<th>Mn</th>
<th>Mg</th>
<th>Cr</th>
<th>Ni</th>
<th>Zn</th>
<th>Ti</th>
<th>Sr</th>
<th>Other Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10.5-11.5</td>
<td>0.25</td>
<td>0.20</td>
<td>0.25-0.35</td>
<td>0.50-0.7</td>
<td>--</td>
<td>0.10</td>
<td>0.10</td>
<td>0.20</td>
<td>0.05-0.07</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Typical Mechanical Properties at 0.60% Mg

<table>
<thead>
<tr>
<th>Casting Process and Temper</th>
<th>Aging Time and Temperature</th>
<th>Tension</th>
<th>Endurance Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Cast 362.0--F</td>
<td>as cast</td>
<td>38-40 (260-275)</td>
<td>9-11</td>
</tr>
<tr>
<td>Die Cast 362.0--T6</td>
<td>6 hr at 320 F</td>
<td>43-46 (295-315)</td>
<td>14-16</td>
</tr>
</tbody>
</table>
Alloys for high integrity diecastings

Example: CALYPSO 61D (Al Si10MgMnFe): Difference between crash behaviours in T7 and F

Courbe de crash dynamique

Force vs time curves, T7 and F conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>YS</th>
<th>UTS</th>
<th>Elongation %</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>120 ~ 140</td>
<td>270 ~ 290</td>
<td>10 ~ 12</td>
</tr>
<tr>
<td>T7</td>
<td>155 ~ 165</td>
<td>215 ~ 225</td>
<td>14 ~ 18</td>
</tr>
</tbody>
</table>

Viami International Inc.
Alloys for high integrity diecastings

Example: CALYPSO 61D (Al Si10MgMnFe)
Difference between crash behaviours in T7 and F
Heat treatment of high integrity die castings

Hold at solution temp. 460°C ± 5K.

Water quench

Air quench

cooling rate ~3.75°C/sec

hold in annealing furnace

e.g. 430°F

860°F
Where could I do R&D in this field?

Examples: Delaware Dynamics, Muncie, IN
Diecasting R&D center with 1600t, 2000t and 3500t HPDC machines

Canmet MATERIALS
A national laboratory of Natural Resources Canada, Hamilton, ON
1200t HPDC machine
Summary

• Traditional diecasting processes had difficulty in achieving high integrity (low porosity) castings and were therefore unusable for structural applications

• Traditional diecasting has relied upon high levels of Fe in Al to reduce die soldering. As known, Fe also destroys mechanical properties (especially elongation)

• New diecasting processes applying process control, high vacuum, proper die design, etc. and new alloys allow production of diecastings with high quality / mechanical properties (heat treatable, weldable, crash worthy, high fatigue life, etc.)

• The inherent advantages of diecasting (high freezing rate, thin walls, high precision, etc.) can now be used to produce high quality structural castings at competitive costs.
Questions?

VIAMI INTERNATIONAL INC.
267 Rue Alice Carriere
Beaconsfield, Quebec, H9A 6E6
Canada
Tel. & Fax. +1 514 426 1814
martin.hartlieb@viami.ca
www.viami.ca