ZENZE' WONITOR, CONTROL SENSE, MONITOR, CONTROL

We will begin shortly:

Call using your telephone and this dial-in information \rightarrow

Replacement Valves, Manifolds, and Control Packages for Die-casting

Retrofit Options

Available Conversions

Throttling Manifolds with:

- Standard slip-in Cartridge Valves or
- Inline Valves

For These Manufacturers

- ACV Lester
- EPCO
- HPM
- IDRA
- Prince
- Toshiba
- Wolniak
- More...

What will we be covering today?

- Benefits of Retrofit
- Throttling Manifold Integration
 - Toro Company A Case History
- Benefits of the Sure-Trak2 Shot Control System
- Other Throttling Manifolds
- Summary
- Q&A

Why Retrofit?

Performance Benefits

- Increased Performance: Gain 100"/sec. from your shotend.
- Increased Efficiency: Over 15% jump in overall machine cell output.
- Decreased Scrap: 25% less scrap means more margin.
- Lower Impact:

Reduce flash, reduce tool wear, reduce wear & tear on DCM

Why Retrofit?

Business Benefits

- Extend the Life of Your Existing shotend: New capabilities for a fraction of the cost of buying new.
- New Products, New Markets: Any shape shot profile, any injection process.
- Easy Upgrade:

Minimized downtime and expert in-the-field installation.

CASE STUDY

THE TORO COMPANY

The Plant

- Neat & clean facility
- Over 20 years in operation
- Continuous change and improvement with an eye to the future

The Team - Fabrication Group

- Project Engineer
- Tooling Engineer
- Injection Molding Process Engineer
- Production Scheduler
- Shift Supervisors (3)
- Department Head

The Equipment

- Injection Molding Machines (7)
- Die-casting Machines (5)
- Automated cells
- Largest Machine: 1,600-ton Prince

Prince 1600-ton with Binary II shot valve

The Production Environment

- Available production on machine typically sold out from October-June (summer season production)
- A dozen different lawn mower decks are run
- Post-cast trim, clean, and painting on site.
- Lean staff + High volumes = Highly Automated

Robust, Repeatability, and Low Scrap Rates

The Challenge

- Mower deck designs have increased in size
- New designs require a process that approaches the clamp tonnage of the upper half.
- Decks are center shot so limited area is available for the ingate.
- Long metal travel distance requires consistent shot performance.

The Shotend - Before

- 1600-ton Binary II three-speed shot system.
- Upgraded with ramping capability for the slow and intermediate velocities.
- No low impact system.

Binary II shot valve

Recurring maintenance issues

- Binary II shot valve developed leakage issue
 - Occasional cracked segment on the valve changed the velocity profile and caused scrap.

Binary II shot valve segments not collapsing properly

- Caused inconsistent shot speeds in fast shot
- Caused scrap castings from where poor fill resulted from increasing fill times.
- Operators frequently adjusting the shot control settings trying to maintain filling velocity.
- Variation caused scrap rate climb and need to make a change!

Changing Needs

- More speed required to accommodate castings that were now challenging the original performance specifications
- Various alternative shotend options considered
- Buying a new shotend taken off the table the current shotend was well designed and mechanically solid.

DECISION: A robust velocity control system and more speed were required.

VISI-:-Trak® SENSE, MONITOR, CONTROL

Solution

- Remove Binary II shot valve and manifold block
- Direct bolt-in replacement with:
 - Olmsted 80mm two-way, servo-piloted throttling valve slip-in cartridge format
 - Piloted by an H.R. Textron R
 -DDV servo pilot valve
 - PO check valve releases oil to retract the shot cylinder
 - Cartridge valve develops pressure to retract the shot cylinder
 - Cartridge filter ensures a clean oil supply

HR Textron R-DDV Direct Drive

Has been successfully proven over many years in the rugged die casting environment

VISI-:-TPAK® SENSE, MONITOR, CONTROL

Installation

Start: Tuesday Morning Delivery Finish: Thursday Afternoon

- Manifold bolted-in
- Original connections replaced with new fittings
- 3" high pressure pipe moved 3" to accommodate new block
- Rotary rack and pinion encoder replaced by a Visi-Trak Sensor in 1" tail rod.

Total install < 3 days

"The new Visi-Trak valve increased our top speed by over 100" per second and has made it possible to continue creating cost-effective castings even after we outgrew the original capability of the machine."

DAVE BROCKMAN

Senior Fabrication Project Engineer The Toro Company, Windom, MN

Performance Results

Shot Profile – New Throttling Manifold

X-Bar Chart – Avg. velocity from 10-15" stroke

X-Bar Chart – Repeatability from 25-30" of stroke

X-Bar - Fast Shot Rise Time

ToroCalculator.	doc - Micr	osoft Wor	d										
0 💕 🖬 🔒 🛛	3 3 7	11 ×	D 🚨 🗸	ッ・ペー! 😪 🗊 🗇	🗟 II 🤞 q	🗐 🦷 <mark>200%</mark>	• • • • III <u>R</u> ead	Norma	l • Tim	es New Roman	• 12 • B I	⊻ 📑 ≣ ‡≣	•]= := := ! <u>A</u> •
Eile Edit View	Insert For	mat <u>I</u> ool	s T <u>a</u> ble e-	Synergy <u>Wi</u> ndow <u>H</u> elp	Adobe PDF Ac	robat <u>⊂</u> ommer	nts					Ту	pe a question for help
												- Mill 1997	
L Å · ·		1	1	· · · · 2	a a a 1		3		· 4 ·				
. Create	New Part		Delete Thi	Calculator									
_ Machine	e	Basic	Advanced	Distance Units: 🔎	IN C MM	C CM			Alloy	Edit			
. E20	-			Velocity Units: 🔎	IPS C FPM	C CMI	PS C MPS	Aluminiu	m 380	-			
- Part				Weight Units: 🕡	LBS 🤆 KG								
 2spdolit 2spmft 	50 🔼			Plunger Diameter	4.50	IN	Dist to Fill Runne	er	2.0639	IN			
3spd12	5			Plunger Area	15.904	IN^2	Metal at Gate (P	2)	22.706	IN			
3spd16 3STPC	10g			Dry Shot Length	36	IN	Velocity During F	Fill	200	IPS			\sim
8ips				Shot Sleeve Volume	572.55	IN^3	Gate Area		.96	IN^2			
- NEWP	ART			Casting Weight	15.88	LBS	Gate Velocity		3313.4	IPS		1	\sim
. olramp				Overflow Weight	2.14	LBS	Cavity Volume		199.34	IN^3			
TESTP	AR1			Cavity Weight	18.02	LBS	Sweep to Fill Car	vity	12.533	IN			
- TL0050	J53 🔛			Weight R + B	4.06	LBS	Filltime		62.667	MS			
				Total Shot Weight	22.08	LBS	Intens Press		2400	PSI			
F10: F	nange ocus	Machine	e Not Moniti	Density	0.0904	LB/IN^3	Plunger/Gate Ra	atio	16.567				
	242	00		Volume of Shot	244.25	IN^3	Hydraulic Cylinde	er Dia	7.0	IN	~~~		~
-	213	09		% Shot Sleeve Full	42.66		Hydraulic Cylinde	er Area	38.484	IN^2			
· v				SSF Posn (P1)	20.643	IN	Metal Pressure	89.92	5807.4	PSI			
· · ·				Biscuit Length	1.76	IN	Area Cast/Ovrflv	v/Spray	574	IN Z			
	159	82		Biscuit Volume	12.087	IN^3	Opening Force		1666.7	TONS			
				Biscuit Weight	1.0927	LBS	Copy P1 and	P2 to p	art setup				
				Runner Volume	32 824	IN ³	Cau	o Chang	an [1
				Turner volume	UL VET		Sav	e criang	6 5				
Page 1 Sec 1	1/1	At 1.2	' ln 1 (tol 1 REC TRK EXT	OVR Ga								
🛃 start 🔰	👜 ToroCa	iculator.doc	📰 P	lot a	FasTrak2	T	🐠 Part Setup					1	😨 💰 🐩 🕏 4:34 PI

Calculator – 1667 tons of clamp pressure required

Internal Audit Results

- Challenging castings now easily accomplished
- Outstanding velocity control capability throughout the shot
- Overall equipment efficiency increased by 15.5%
- Scrap rate reduced by 28.5%
- Significant flash reduction using low impact capability
- Total integration cost: ~40% of new a shotend.

"The retrofit package and the Sure-Trak2 Control from Visi-Trak[®], has given us a shot system with **outstanding control & performance**. This economical solution extended the service life of the machine and helps us continue to make cost-effective castings after they have outgrown the clamp tonnage capacity of the machine. **Its a lot of bang for the buck.**"

DAVE BROCKMAN

Senior Fabrication Project Engineer The Toro Company, Windom, MN

TOUGH + RELIABLE

Design Simplicity for inherent reliability.

Extreme Accuracy up to 480IPS/12MPS.

Non-contact sensor minimizes equipment wear.

No calibration or alignment means no set-up problems.

Proven Performance for over 25 years.

Easy to install & operate nearly maintenance free.

Time, Position, Intensification Data Resolutions

	Displacement	Time (milliseconds)	Time Based Samples (3ms)	Position Based Samples
Slow Shot (Fill)	13.00"	949	316	1040
Fast Shot	6.64"	55	18	532
Intensification	.06"	500	167	500
Total	19.70"	1504	501	2072

Sure-Trak2 DIE CASTING SHOT CONTROL SYSTEM 211

Sure-Trak2[™] Control Benefits:

- Reduce Air Entrapment during Slow Phase
- Smooth Metal Flow & Flexibility of adjustments during Fast Shot/ Fill Phase
- Repeatability regardless of changes
- Deceleration for Low Impact

- Programmability in engineering units for fast and repeatable Set-ups
- Store, Recall and Download Set-ups
- Easily Retrofitted to Existing Machines or Specify on New Machines

SENSE, MONITOR, CONTROL

Programmable Velocity

SENSE, MONITOR, CONTROL

Programmable Pressure

Programmable Pressure & Velocity Control

SENSE, MONITOR, CONTROL

Dynamically Adjustable

VISI-:-Trak® SENSE, MONITOR, CONTROL

Repeatable (10 Shot Overlay)

Responsive

If your die casting requirements demand extremely fast acceleration to fast shot with quick cavity fill... Sure-Trak[™] can deliver.

This shot from a 2500 ton Idra equipped with 100mm. SV Series Valve, and Sure-Trak[™] Control provides acceleration from .276 mps to 8.3 mps. in 16 milliseconds(10.9 inches per second to 326.8 ips.)

OTHER INTEGRATION DESIGNS

HPM New front head throttling manifold

Advantages of New Front Head Design

- Eliminates the POC a proprietary design from yesteryear
- Integrates Olmsted 2-way slip-in cartridge valve
- Extremely robust
- Outstanding shot control
- Reinforced packing retainer gland
- Improved rod end bearing surfaces ensure cylinder rigidity
- Visi-Trak sensor on piston rod is extremely robust

IDRA Throttling Manifold

IDRA Shot Profiles

Inline Valve Facilitates Hydraulic Integration on Some Shotend Hardware

Inline valve on Wolniak Shotend

Die Cast Press shotend connected to the casting for integration onto Ube DCM.

Hydraulic Throttling Integrations Engineered for:

- Toshiba
- Kux
- Triullzi
- Agrati
- B&T
- Weingarten
- Buhler "B" series machines meter-in design
- And more...

Summary

- Enhanced Shot System Capabilities.
- Field Retrofitable.
- Flexible control system to run even the most challenging injection profiles.
- 100"+/sec increase in top shot speed.
- Less than half the cost of a new shotend.

Q&A

Thanks You

Jack Branden Vice President of Sales

Visi-Trak Worldwide 8400 Sweet Valley Drive, Suite 406 Valley View, OH 44125-4244

Office Phone: 800-252-8725 x32 Office FAX: 216-524-9594 <u>www.Visi-Trak.com</u>

